Using Manipulatives to Meet Common Core Math Standards Stacy Remphrey & Megan Zimmermann Charles F. Patton Middle School Kennett Square, PA ## Representing and Evaluating Expressions involving Fractions: Day 2 | 1. One-half of 4x + 6 Draw a picture: | 2. Two-thirds of 9x - 3 Draw a picture: | |--|--| | Write a sentence describing what you did. | Write a sentence describing what you did. | | Write the expression using numbers: | Write the expression using numbers: | | 3. Three-fifths of 10x + 15 Draw a picture: | 4. Three-fourths of 4x - 12 Draw a picture: | | Write a sentence describing what you did. | Write a sentence describing what you did. | | Write the expression using numbers: | Write the expression using numbers: | ## Extra: | 5. Two-thirds of 5x + 3 | 6. Four-fifths of 10x - 8 | | | |---|--|--|--| | Draw a picture: | Draw a picture: | Write a sentence describing what you did. | Write a sentence describing what you did. | | | | | _ | | | | | | | | | | | | | | | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | NAC: | | | | Write the expression using numbers: | Write the expression using numbers: | | | | | | | | | | | | | | | | | | | 7. One-third of 7x + 5 | Answer the following questions: | | | | | Transfer and renewing questions. | | | | Draw a picture: | | | | | | a. What do the numerators of the fractions | | | | | represent? | Write a sentence describing what you did. | | | | | The second accounting to an area. | | | | | | b. What do the denominators of the fractions | | | | | represent? | | | | | | | | | | | | | | | | | | | Write the expression using numbers: | | | | | | | | | | | | | | | | | | | ## **Expressions Unit- Simplifying Expressions by Combining Like Terms** | | • | |--|--| | 1. ¾(6x+9) + 3x | 2. ½ (7x-14) - 2x | | a. Draw a picture representing the expression. | Draw a picture representing the expression. | | b. Write a sentence describing how you simplified the expression | b. Write a sentence describing how you simplified the expression | | c. Show your steps algebraically | c. Show your steps algebraically | | 3. $5x + \frac{3}{5}(5x + 10)$ | 4. 2x -3(x+13) + x | | a. Draw a picture representing the expression. | a. Draw a picture representing the expression. | | b. Write a sentence describing how you simplified the expression | b. Write a sentence describing how you simplified the expression | | c. Show your steps algebraically | c. Show your steps algebraically | ## Factoring out a Greatest Common Factor of an expression: Expressions Unit Day 3 | 1. For the expression 4x + 8 Draw a picture: | 2. For the expression 6x + 9 Draw a picture: | |--|---| | Divide it up into the highest amount of equal groups possible. | Divide it up into the highest amount of equal groups possible. | | I have groups of | I have groups of | | Rewrite the expression according to the grouping you have done. | Rewrite the expression according to the grouping you have done. | | Terms are added or subtracted. What are the terms of our expression? | What are the terms of our expression? | | The Greatest Common Factor (GCF) is the largest number that can go into two or more numbers. What is the greatest common factor of the terms you listed above? | What is the greatest common factor of the terms you listed above? | | 3. For the expression 5x + 5 Draw a picture: | 2. For the expression 8x - 10 Draw a picture: | |---|---| | Divide it up into the highest amount of equal groups | Divide it up into the highest amount of equal groups | | Divide it up into the highest amount of equal groups possible. | Divide it up into the highest amount of equal groups possible. | | I have groups of | I have groups of | | Rewrite the expression according to the grouping you have done. | Rewrite the expression according to the grouping you have done. | | What are the terms of our expression? | What are the terms of our expression? | | What is the greatest common factor of the terms you listed above? | What is the greatest common factor of the terms you listed above? | | | | Now try these. Factor out the GCF of the expressions. 3. $$4x^2 + 5x$$ 4. $$7x^3 - 8x$$ ## Solve Equations with Fractions Day 1 | Model | |---------------------| | | | | | | | Write Algebraically | | | | | | | | | | | Model | |-----------------------------|---------------------| | $\frac{x}{4} = \frac{3}{4}$ | | | Write | Write Algebraically | | | | | | | | $\frac{x}{4} = -2$ | Model | |--------------------|---------------------| | Write | Write Algebraically | | | Model | |-----------------------|---------------------| | $\frac{5x-5}{5} = -4$ | | | Write | Write Algebraically | | | | | | | ## Practice: Solve for x. You may use the manipulatives if you choose. 1. $$\frac{1}{5}x = 2$$ $$\frac{3}{4}w = 6$$ 3. $$\frac{x}{5} = 3$$ 4. $$\frac{3x+6}{3} = -4$$ # **Solving Equations Using Algebra Tiles** Name ______ Date_____ | Equation | Tile Model | Written Description of
Procedure | Mathematical
Procedure
(Algorithm) | |----------------|------------|-------------------------------------|--| | x + 2 = 3 | | | | | 2x - 4 = 8 | | | | | 2x + 3 = x - 5 | | | | | | | | | # Solving Equations, Using Algebra Tiles – Jigsaw Puzzle 2 Date Name _ | | | 2x + 1 = 5 | Equation | |--|---|------------|------------------------------------| | | | | Tile Model | | | Three negative xs and two units are the same as 5. Subtract two units from each side of the equation. Divide both sides of the equation into two equal groups. Flip both sides of the equation to make them opposites. One x is equal to one negative unit. | | Written Description of Procedure | | $2x - 3 = x + 2$ $\frac{-x}{x - 3} = \frac{-x}{2}$ $\frac{+3}{x} = \frac{+3}{5}$ | | | Mathematical Procedure (Algorithm) | ## **Equations Quiz: Pre-Algebra** Calculator is allowed. For the given equation, be sure to answer each part: $$\frac{2}{3}x + 1 = 3$$ - 1. Draw the algebra tiles that you would use to model the equation. - 2. Write out the steps you would do to solve the equation. - 3. Solve the equation algebraically. - 4. Check your answer. 5. $$x + 3 = 19$$ 6. $$-4x - 10 = 18$$ 7. $$3x - 2 + 2x = 13$$ 8. $$3(x+2) = x-4$$